

This project has received funding from the European Union’s Horizon 2020 research and

innovation program under grant agreement No 769267.

Disclaimer:

This document reflects only the author's view.

Neither INEA nor the Commission is responsible

for any use that may be made of the information it contains.

D3.1 – Cloud Platform Integration concept and

guidelines
V. Bracke (IMEC), J. Hoebeke (IMEC), D. Kerkhove (IMEC), Tobias Kutzler (IFF)

and B. Volckaert (IMEC)

Document Number D3.1

Document Title Cloud Platform Integration concept and guidelines

Version 1.0

Status Final

Deliverable Type Report

Contractual Date of Delivery 30.04.2019

Actual Date of Delivery 30.04.2019

Contributors IMEC, IFF

Keyword List Cloud Platform, IoT Stack, Middleware, Integration

Dissemination level Public

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 2 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Change History

Version Date Status Author (Partner) Description

0.1 11/12/2018 Vincent Bracke created

0.2 22/01/2019 Bruno Volckaert commented

0.3 30/01/2019 Vincent Bracke continued

0.4 06/03/2019 Vincent Bracke ‘Integration of IoT Stack

through Fort Knox’ section to be

completed before revision

request

0.5 24/04/2019 Tobias Kutzler (IFF) Added section ‘Integration of

IoT Stack through Fort Knox’

0.6 29/04/2019 Vincent Bracke

Jeroen Hoebeke

Bruno Volckaert

Last internal review at IMEC

1.0 29/04/2019 Vincent Bracke Final version

Quality Check

Version

Reviewed

Date Reviewer (Partner) Description

0.4 24/04/2019 Acciona No comments

0.4 24/04/2019 Leitat No comments

0.4 24/04/2019 IFF Added content for section 5

No other comments

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 3 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Abbreviations

AIOTI Alliance for IOT Innovation

API Application Programming Interface

AR Augmented Reality

COAP Constrained Application Protocol

DASH Dynamic Adaptive Streaming over HTTP

DTLS Datagram Transport Layer Security

DSS Decision Support System

HTTP HyperText Transfer Protocol

ICT Information and Communications Technology

IoT Internet of Things

IP Internet Protocol

IPSO Internet Protocol for Smart Objects

JWT JSON Web Token

GPS Global Positioning System

GS Green Scheduling

JSON JavaScript Object Notation

LoRaWAN Long Range Wide Area Network

LwM2M Lightweight Machine to Machine

LPWAN Low-Power Wide Area Network

MSB Manufacturing Service Bus (IFF-VFK)

OIDC OpenID Connect

OMA Open Mobile Alliance

PAN Personal Area Network

REST Representational State Transfer

RFID Radio Frequency Identification

RPT Requesting Party Token

SCHC Static Context Header Compression

SDO Standards Developing Organization

UDP User Datagram Protocol

UI User Interface

UMA User-Managed Access

URI Uniform Resource Identifier

VFK Virtual Fort Knox

VINO Virtual Network Operator

VOD Video On Demand

WSN Wireless Sensor Network

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 4 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Executive Summary

The so called “IoT Stack” provided by IMEC is a state-of-the-art cloud platform designed to securely

ingest, store and retrieve historical data from its connected devices, supporting multiple IoT protocols.

It acts as a middleware layer by decoupling and shielding the data producer from the data consumer

(and vice-versa); consequently easing integration, accessibility and future evolution of the connected

systems.

This document is structured in five main sections, of which the first one contextualizes the underlying

architectural drivers that justify the need of a cloud based middleware layer for the integration of data

coming from IoT devices used in ports operations.

The second section introduces the so called ‘IoT Stack’ which is the platform that is provided by

IMEC in the context of this project to realize this integration and illustrates it through a ‘demo use-

case’. It also provides useful tools aiming at supporting partners when developing and troubleshooting

the integration of their software components with the IoT Stack. This section is then followed by two

more detailed sections; the first one introduces the main underlying concepts defined within the IoT

Stack while the latter mostly focuses on concrete instructions for authentication to the platform,

pushing data to the platform and finally retrieving data from the platform.

Finally, the last section introduces the ‘Virtual Fort Knox’ (VFK) platform provided by Fraunhofer

IFF for this project. This platform will be further defined in later specific deliverables, however as it

will host the different software components that will be developed for this project and that those

components will need to retrieve data from ports IoT devices, it is as well part of the ‘cloud platform

integration’ and consequently is briefly introduced here.

This document is intended for technical partners, members of this consortium, developing in the

context of this project device side and/or application side components and provides them the useful

information for efficient use of the offered functionalities (and underlying concepts), illustrated when

relevant by specific examples.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 5 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Table of Contents

1 IoT Middleware as cornerstone in the PortForward architecture ... 8

1.1 The challenges that today’s ports are facing ... 8

1.2 The objectives of the project ... 9

1.3 The architectural solution .. 9

1.3.1 Summary of the defined architecture ... 9

1.3.2 The IoT Stack as Middleware Cloud Platform .. 11

1.4 Link with the defined use-cases .. 11

2 The IoT Stack introduced ... 13

2.1 Overall architecture ... 14

2.2 The demo ... 15

2.3 Tools and support for the developers .. 19

2.3.1 The Swagger UI ... 19

2.3.2 The IoT Stack Explorer .. 19

2.3.3 The IoT Stack Client .. 19

2.3.4 Online documentation and remote support .. 19

3 Main concepts of IMEC’s IoT Stack .. 20

3.1 Things .. 20

3.2 Metrics ... 20

3.3 Events .. 20

3.4 Scopes .. 20

3.5 Geohashing .. 21

3.6 Temporal paging ... 22

3.7 The concepts in practice (Swagger UI) ... 25

3.8 Planned feature: video streaming .. 27

3.9 Features provisioned outside of the IoT Stack .. 28

3.9.1 Pre-processing .. 28

3.9.2 Meta-Data and other non-IoT data ... 29

4 Usage of the IoT Stack platform ... 30

4.1 Authentication and Authorization ... 30

4.1.1 Authentication to the identity server .. 31

4.1.1.1 On behalf of the user .. 31

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 6 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

4.1.1.2 The client as itself ... 33

4.1.2 Getting the RPT token ... 33

4.1.3 Call a resource .. 34

4.1.4 Refreshing the RPT .. 35

4.2 How to push data through the REST API? ... 35

4.3 How to retrieve data? .. 36

5 Integration of IoT Stack through Virtual Fort Knox .. 37

5.1 Service Deployment .. 38

5.2 Services types .. 39

5.3 Data Flow .. 40

5.4 Use Case example ... 41

6 Conclusion .. 42

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 7 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Figures

Figure 1 - PortForward Architectural Layers ... 9

Figure 2 : Layered Component Architecture ... 10

Figure 3 : Generic block diagram of PortForward Architecture approach .. 12

Figure 4 : High Level presentation of the IoT Stack ... 14

Figure 5 : UI of the demo simulation ... 15

Figure 6 : High Level Design of the demo .. 16

Figure 7 : Data ingestion .. 17

Figure 8 : Data retrieval ... 18

Figure 9 : Proposed structure for Portforward scopes ... 21

Figure 10: Principle of Geohashing ... 21

Figure 11 : Temporal Paging - Last available data .. 23

Figure 12 : Temporal paging - Historical data ... 24

Figure 13 : A thing based query ... 25

Figure 14 : A location based query .. 26

Figure 15 : Video streaming with object detection .. 27

Figure 16 : (Pre-)Processing of data in VFK ... 29

Figure 17 : Screenshot from ingest API as defined in the Swagger UI ... 36

Figure 18: Virtual Fort Knox Components and Roles (Source: Virtual Fort Knox Research) 37

Figure 19: Service deployment on Virtual Fort Knox by using Docker .. 38

Figure 20: Data Flow via Pull/Response (1) or Push of Data (2) .. 40

Figure 21: Possible Solution for integrating Tracking and Identification Technologies together with

the IoT Stack with services on VFK .. 41

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 8 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

1 IoT Middleware as cornerstone in the PortForward

architecture1

1.1 The challenges that today’s ports are facing

Real time operation is the main challenge for any port having an aspiration to manage, minimize and

reduce congestion events both within the port and also through the supply chain.

PortForward will attempt to address important challenges that today’s ports are facing, in order to

take a substantial step towards the Port of the Future. More specifically the following needs are

addressed:

 Lack of efficiency in operations with heterogeneous freights such as inefficient land use, berth

scheduling & quay crane allocation, quay crane scheduling & bay sequencing, yard

configuration & stacking policies, and lack of monitoring of the depth of access channels and

quays, which varies due to silting;

 Need for real time monitoring of freight flows through the use of end-to-end track-and-trace

solutions in order to optimize port activities;

 Need for remote monitoring and management of important port operations, such as

maintenance scheduling, cargo and passenger traffic, especially for short sea shipping cases;

 Interconnection with hinterland transportation with special focus on inland waterways;

 Interface with the surrounding urban environment;

 Experience sharing and transferability to other intermodal transport hubs (ports, airports, etc.);

 Environmental impact reduction through the use of green technologies and energy solutions

saving.

To address the aforementioned problems, PortForward proposes a holistic approach that will lead to

a smarter, greener and more sustainable port ecosystem and which will include the following features:

 The introduction of an Internet of Things (IoT) concept for port assets (infrastructure,

vehicles, cargo, people and processes);

 Sensor deployment, including cameras, multi-modal tracking devices, etc.;

 Interconnection into one seamless, versatile and secure IoT network;

 Remote management and intelligent maintenance of port assets;

 Virtual Port tool embedded in the PortForward Dashboard providing centralized control and

alternative visualizations;

 Novel smart logistics platform with Decision Support System (DSS);

 Environmental and energy monitoring/optimization system using Green Scheduling (GS);

 Augmented Reality (AR) for pilot assistance and remote assistance to workers/operators;

 Information exchange layer with other stakeholders, e.g. city services;

 The socio-economic analysis of the port interface with its surrounding area and the port-city,

as well as the rest of the logistics value chain.

1 Most of this section is extracted from the proposal document of the PortForward Project (Proposal number 769267-2)

sent by C. Blobner on 19/10/2017 to the Participant Portal Submission Service of the European Commission.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 9 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

1.2 The objectives of the project

PortForward proposes a holistic approach that will lead to a smarter, greener and more sustainable

port ecosystem and which will include the following features:

 The introduction of an Internet of Things (IoT) concept for port assets (infrastructure,

vehicles, cargo, people);

 The socio-economic analysis of the port interface with its surrounding area and the port-city,

as well as the rest of the logistic value chain.

There only is one way to eat an elephant: a bite at a time; so has it been for this project by dividing

its overall objectives into 10 smaller ones, of which the objective number 3 is reminded hereafter:

O3: Internet of Things (IoT) middleware that facilitates the deployment, discovery and management

and unifies the interaction with 1) heterogeneous connected sensors/actuators, 2) tracking devices

and 3) connected workers, thereby making use of both short, medium and long range wireless

connectivity and leveraging on open IoT standards such as LWM2M/IPSO (…).

1.3 The architectural solution

1.3.1 Summary of the defined architecture

Figure 1 - PortForward Architectural Layers

Figure 1 gives a high-level overview of the PortForward architecture that will be composed of three

different layers:

Sensor Layer (IoT-Enabled Port): The main function of this block is to get data from the real

physical environment, and convert it into digital data. This includes the IoT data collection using

specific hardware systems, specialized sensors, direct input from the human users (as feedback from

the field), data coming from open sources, such as SafeSeaNet2, other environmental sensors, etc.

According to each use case, there can be different kinds of communication networks: a) LPWA

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 10 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

network: for bandwidth limited single-hop networks to cover large areas (up to several km), b) Local

Area Network: to cover data acquisition directly from 1m to 1km without multi-hop, c) WSN: for

multi-hop monitoring networks and d) Personal Area Network: to cover static platforms, where the

distance is below 1m.).

Middleware Layer (Connectivity): The main function of this block is to gather and pre-process the

data coming from the sensor layer, using different wireless communication technologies, in order to

be processed and consumed by the upper level of the PortForward system. This will enable data

collection from very heterogeneous sources, with attention for easy deployment, open standards,

management as well as secure communications. Today, interoperability remains one of the biggest

constraints in the IoT industry and it will not be different for PortForward. Therefore, the

recommendation to adhere to the principles pushed forward by the Alliance for IoT Innovation

(AIOTI) and its Standardization Working Group, which aims to build consensus on open ways of

working. For the sensor layer, attention will be given to light-weight specifications such as LWM2M

that can be applied to a wide range of IoT devices, that tackle key aspects such as device management,

data access and security and that build on open standards that are also used by other SDOs. This way,

PortForward will ensure interoperability as well as alignment with the future European standards and

directives.

Application Layer (PortForward Cloud): this involves the development of the PortForward

integrated system which will comprise the Virtual Port implementation, the Decision Support System,

the novel Smart Logistics Tool, the Intelligent Maintenance Module, the Green Scheduler and the

front-end AR-based applications and user interfaces (PortForward Dashboard).

Figure 2 : Layered Component Architecture

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 11 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

1.3.2 The IoT Stack as Middleware Cloud Platform

As mentioned, the realization of the port of the future will involve the roll-out of a variety of IoT

devices such as sensors, actuators, tracking devices, etc. as well as their integration with a variety of

other systems such as the ports’ ICT platforms as well as workers’ devices. The collected data as well

as two-way interactions will enable improved port monitoring, increased traceability, increased

efficiency of processes and workers as well as improved environmental monitoring. In this context,

IMEC’s Internet of Things middleware layer will facilitate the integration of heterogeneous IoT

devices that can make use of various wireless communication technologies (e.g. short range WSN

technologies, medium-range wireless LAN technologies, long range LPWAN technologies).

The DYAMAND platform enables the integration and abstraction of different technologies and

devices typically found in local networks. It is part of the larger City-of-Things framework for smart

cities that offers generic APIs to access the collected data and build cross-technology smart

applications. This will serve as the starting point for PortForward’s IoT middleware and as an enabler

for further innovations. In a second phase, IMEC will extend this platform with LWM2M-based

device management, discovery and data access solutions. This open light-weight specification uses

open standards (e.g. CoAP, IPv6/6LoWPAN) and data models to enable efficient, machine-

understandable interactions between ICT backend systems and heterogeneous (embedded) devices

(machines, sensors, actuators, etc.).

By leveraging on such standards, not only for the novel targeted IoT devices, but also for the newly

to be deployed communication infrastructure (e.g. LoRaWAN connectivity), deployment and

management will be facilitated and integration cost reduced. At the same time, support for off-the

shelf devices will be achieved via adapters. The end result will be a unified view towards all deployed

IoT devices for monitoring, data access and control by exposing standardized interfaces following

open IoT specifications and data models, as well as discovery and management capabilities. This will

facilitate and speed up the creation of novel services on top.

1.4 Link with the defined use-cases

All use-cases that this project will deliver have been identified and documented2 and will use the IoT

Stack to connect the port (IoT) data sources to the (to be) developed applicative services when

relevant (i.e., when bringing added value in comparison to direct connection). Typically, data

captured by systems and devices at ports premises3 are pushed to the IoT Stack that offers this data

to the consuming applicative services4:

 Protocol and addressing abstraction: data retrieved through standard HTTP REST API

protocol (no need to deal with devices specific protocols nor to address them directly).

 Different rich query mechanisms: (combination of) time, location, metric and thing based

queries.

 Efficiency, stability and scalability: the platform is built on proven open-source software

designed for cloud based platforms having to efficiently process massive data sets.

2 See : D1.3 – Technical requirements specification

3 Environmental data (air quality, temperature, wind…), operations and assets related data (id, position, weight, status…),

etc.

4 The enumerated concepts are here only introduced and will be further described in the following sections

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 12 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

 Security and data isolation: supported amongst others by the OIDC protocol and the specific

concept of scopes.

Figure 3 : Generic block diagram of PortForward Architecture approach

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 13 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

2 The IoT Stack introduced5

In order to reach the vision of an IoT-enabled port, it must be possible to integrate a variety of sensors

and actuators, to interact with them and to provide interfaces to services on top for accessing pre-

processed data. Starting from the existing IMEC IoT Stack middleware that is being used in the

context of the City of Things (Antwerp)6, T3.1 will set up a similar platform for PortForward and will

extend it according to the needs of the innovations of PortForward.

For data access, the IoT platform will offer a generic, scalable API. Apart from providing basic data

access, it will enable geoqueries, support statistics and retrieval of historical data. For the intake of

data coming from a variety of sensor devices and triggering of actuators, a novel open REST API

based on LWM2M/IPSO interfaces and data models for device management (see T3.2) and data

access will be added. This will enable the plug-and-play integration of any IoT device adhering to

this standard. For devices and systems (e.g. external data sources) that do not support the offered

APIs, an adapter concept will be designed that enables the translation of legacy and proprietary data

formats to these APIs. These adapters will ensure interoperability and offer a uniform way as to how

data can be collected, independently of the underlying heterogeneity.

Alongside this, the platform will be extended to support novel PortForward IoT devices. First, it will

be investigated to what extent IoT devices with very limited capabilities or running over bandwidth

constrained networks (e.g. LPWAN) can directly make use of the proposed APIs and standards, or

whether optimizations in terms of compression and batch transfers are needed to reduce the message

size as well as number of messages. Secondly, the incorporation of localization and tracking

information in the IoT platform will be added. This involves not only the collection of this data, but

also its relations with the actual items being tracked or localized. Thirdly, support for IoT data

exchange with AR headsets may be investigated however actuation of AR headsets may have too

stringent timing constraints.

IMEC will set up the IoT platform early in the project and extend its features based on WP1 and WP2

outcomes. Together with the rest of the partners, the APIs and concept of adapters will be discussed

and refined, after which parties can start the design and implementation of applications interfacing

with the IoT platform.

Together with sensor-abstracting solutions like DYAMAND7, the IoT Stack is able to capture data

from all sensors in a scalable software stack.

This stack is deployed in a cloud environment with support for horizontal scaling. Developers can

make use of this data and feed their application (e.g. End-User applications, real-time decision-

making applications, analysis systems…) using a generic set of APIs.

5 The content of this section is subject to evolve with the platform; therefore always prefer accessing it online on our

website at https://obelisk.ilabt.imec.be/api/v1/docs/

6 For more details, see: https://www.imec-int.com/en/cityofthings

7 For more information, see: https://dyamand.ilabt.imec.be/public

https://obelisk.ilabt.imec.be/api/v1/docs/
https://www.imec-int.com/en/cityofthings
https://dyamand.ilabt.imec.be/public

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 14 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

2.1 Overall architecture

The IoT Stack is a cloud based platform that offers interfaces for IoT device integration within

standard (web) applications. Two key aspects have been taken into account by design in the

implementation of this multi-tenant platform:

 Scalability: the platform has been designed as a set of reactive micro-services running on top

of Kubernetes. The technologies used are state-of-the-art technologies for the ingestion and

processing of events streams. As per design, the cloud-based IoT platform is thus highly

scalable and consequently there is no intrinsic known limit to the data throughput it can digest,

process and render. This being said, it consumes computational, memory and storage

resources proportionally to the volume of data having to be processed: therefore the definition

of the requirements should remain reasonable. IMEC will review, with each Use-Case owner,

the feasibility and sustainability of its requirements before validation (or adaptation): this

mainly concerns topics like data retention, volumes of data and frequency of messages.

 Security: in addition to the concept of scopes (allowing data isolation), the platform also

makes uses of modern and strong authentication & authorization mechanisms through OIDC.

Figure 4 : High Level presentation of the IoT Stack

Importantly, and before further explanations on the platform, the reader should be aware that the IoT

Stack will evolve (where possible in a backwards compatible way). When such IoT Stack evolutions

occur, IMEC ensures clear and on-time information about new features / changes and will provide

the required support to partners integrating these changes.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 15 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

2.2 The demo

For didactic purpose, mainly intended to technical partners of the consortium having to integrate their

system with the Middleware IoT Stack, this simulation has been developed to quickly showcase how

to publish data to / retrieve data from the IoT Stack. Figure 5 is a capture of the Web UI and contains:

1) A live graphical representation of the operations currently running on the port: it shows the

trucks and the cranes moving and being (un)loaded as well as the gates opening and closing.

2) A heatmap selection box: allowing to render, as a superposed layer on the graphical

representation of the port, a heat map of the most used routes of the port during the last X

hours (another example of heat map might represent air-quality at different places of the port

for instance). NB: this is typically a calculation that should be pre-processed to avoid heavy

calculation at runtime (no pre-processing was implemented in the demo, resulting in delay

between the selection of a period and the graphical rendering of the heat map).

3) Some statistics/reporting: in this demo two basic figures are reported: the number of trucks

currently in the port as well as the average time spent by trucks in the port.

4) Last but not least an informative box presenting the events data stream received by the IoT

Stack in (near) real-time.

Figure 5 : UI of the demo simulation

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 16 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

A high level design of this demo is presented in Figure 6; there are four main components8:

1. The World Simulator: simulating different ‘Things’ (gates, trucks and gates) running

simultaneously and sending their data to the IoT Stack through the use of the ‘ingest’ API

(after successful authentication through the dedicated API).

2. The IoT Stack: the Middleware platform that shall be used in the context of this project and

that is being called by the different ‘Things’ (see previous bullet) but also by the dashboard

application (see next bullet).

3. The Dashboard: that represents the ‘consuming’ application (or service) querying the IoT

Stack to retrieve some specific data. Pre-processing should occur here if implemented.

4. The Browser, or end-user interface, here a graphical web interface querying the Dashboard

application and presenting the formatted results to the end-user.

Figure 6 : High Level Design of the demo

8 The programming languages used to code this demo are C# for the ‘World Simulator’ and TrueScript for the Dashboard.

Other languages or libraries (e.g.: Java, JavaScript…) are also able to connect to and use the IoT Stack APIs.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 17 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

When zooming on the ingested events (the messages sent by the Devices/Things to the IoT Stack

through the ingest API):

 The trucks and small cranes all send their id, weight and geolocation every second to the

stack (even when none of those values have evolved since the last data exchanged).

 The gates that only send events when a truck enters/leaves the port with the license plate of

the truck and their geolocation (always the same for each gate).

Figure 7 : Data ingestion

Last but not least, hereafter a more detailed focus on the data retrieval:

 The initialization phase collects the latest recorded value for each ‘metric’ of every ‘thing’.

This way, the different trucks can be instantiated and placed according to their position on the

map.

 The browser (through the Dashboard service) subscribes to Server-Sent-Events (‘SSE’),

allowing direct streaming of events from the IoT Stack to the web interface. The things on the

map start moving. The ‘Events’ section in the UI reports a filtered view on the

‘Event_TruckEnteredPort’ and ‘Event_TruckLeftPort’ events.

 When selecting a heat map duration in the UI, a heat map generation request is sent from the

browser to the Dashboard service that performs a time-based query (last x hours). The

dashboard application does some data filtering (truckID) and conversion (position) and

returns the list of events to the browser that visually renders this input as an extra layer on the

map. Typically as to reduce the latency experienced by the end-user when clicking on a

duration, the Dashboard service should be improved as to periodically, in the background,

pre-fetch, filter and convert data to avoid this being done at runtime.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 18 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

 For the report section (‘number of trucks in port’ and ‘average time spent in port’) the browser

periodically asks the Dashboard service to compute and return those. To that end, the

Dashboard queries the IoT Stack, performs the needed computing and returns the requested

values. Here again, some optimization are possible by at least decoupling the retrieval and

computing from the answer to the browser. Another optimization could be that the dashboard

service derives at runtime those figures from the events when passing by instead of performing

an extra specific query.

Figure 8 : Data retrieval

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 19 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

2.3 Tools and support for the developers

2.3.1 The Swagger UI

The complete server-side REST API is documented in OpenAPI 3.0 specification. IMEC is hosting

a swagger endpoint to interact with it. After logging in, it offers documentation of the different

allowed operations and provides a convenient and interactive way for experimenting those (sandbox).

2.3.2 The IoT Stack Explorer

The IoT Stack Explorer is a web interface aimed at supporting developers while developing and

troubleshooting the integration of their component with the IoT Stack. It allows to look at historically

ingested data as well as to observe in real-time the entering data. It is not intended for any other

purposes (i.e. it must not be considered as a user interface for end-users).

2.3.3 The IoT Stack Client

The IoT Stack Client is a client library written in Typescript to interact with the IoT Stack API. This

library makes use of RxJS (Reactive Extensions for JavaScript: a library for reactive programming

using observables that makes it easier to compose asynchronous or callback-based code (RxJS)).

The client has a clear purpose:

 Make it easier to do follow up requests on Temporal Pages (see section 3.6 hereunder)

 Do the heavy lifting on authentication and authorization (see section 4.1 hereunder)

The client uses Keycloak's Javascript library to connect to IoT Stack back-end Keycloak

Authorization Server and handles i) logging in to a supported Identity Provider (eg. Google), ii)

getting the access token, iii) getting the RPT token, iv) refreshing tokens when needed and v)

login/logout support.

The client allows to create Endpoints that can be acted on with methods like execute() or get(). An

endpoint takes an API uri as argument.

2.3.4 Online documentation and remote support

Most of the useful information on the Middleware IoT Stack can be found at:

https://obelisk.ilabt.imec.be/api/v1/docs/. Hereafter, a few documentation and support sources:

Topic For Link

Mailing list PortForward WP3 portforwardwp3@lists.ugent.be

Support service desk Issues, requests, scope problems https://iothelpdesk.ilabt.imec.be

IoT-stack API HTTP Rest API Swagger https://obelisk.ilabt.imec.be/swagger

IoT-stack client library API Typescript client API https://www.npmjs.com/package/@obelisk/client

IoT-stack Explorer IoT Explorer Webapp https://obelisk.ilabt.imec.be/explorer

https://obelisk.ilabt.imec.be/api/v1/docs/
mailto:portforwardwp3@lists.ugent.be
https://iothelpdesk.ilabt.imec.be/
https://obelisk.ilabt.imec.be/swagger
https://www.npmjs.com/package/@obelisk/client
https://obelisk.ilabt.imec.be/explorer

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 20 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

3 Main concepts of IMEC’s IoT Stack

3.1 Things

A Thing is the all-encompassing name for sensors and actuators. They are addressable with an id, and

can measure more than one type of measurement (called a metric – see after). A Thing can in fact be

a single hardware device (with one id) that has multiple sensor-heads. This means it can for instance

measure GPS, air humidity and temperature at the same time (all different metrics).

Sensors and actuators are typically made by several different companies, all speaking different

protocols. This is where an abstraction layer like DYAMAND or the support for an IoT standard like

LwM2M come in. They allow to abstract everything down to generic sensors or actuators that send

understandable messages to the IoT Stack cloud backend, ‘whatever’ their underlying communication

protocol is.

3.2 Metrics

A metric is a type of measurement. Examples are air quality, temperature, humidity, etc. It is an

important aspect of how data is stored; data of the same metric is kept together. The name of the

metric is also an important identifier for querying data via the API.

3.3 Events

Sensor devices detect state changes of what they are observing (lightening, air quality, position,

temperature, weight, timer, etc.) and send this as input to an application for further treatment.

Therefore the Middleware IoT Stack uses the concept of events to store the data that has been sent by

a device in reaction to some trigger. The Middleware IoT Stack doesn’t query a device when an

application requires data about it but rather collects and returns (a collection of) its last registered

value(s).

3.4 Scopes

The IoT platform is built with data isolation in mind. Pragmatically speaking this means that users or

developers using/creating an application that shows data from company A, should not see any data

of company B, although it is hosted on the same platform.

A scope allows to answer those two questions: which data are we talking about? and who can access

the data?

A scope has a few ways to isolate data:

 Time period

o Bounded: only records in time period (from - to) can be accessed

o Unbounded: only records after a certain data can be accessed (from - no-end)

 Geographic area: only records within the area can be accessed

 Metrics: list of metrics that can be accessed

 Things: list of things (sensor ids) that can be accessed

 Data selectors: to select a group of sensors based on internal context tags (set when data was

sent).

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 21 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

A scope can assign users or groups of users. Each of these has some associated rights on which class

of API calls they can do. In the context of the PortForward project, IMEC’s proposal is to structure

scopes as illustrated in Figure 9 hereunder.

portforward.{env}.{port}(.{uc})

{env} s (for staging) / p (for production)

{port} 3/4-letters abbreviation for port identification

(.{uc}) (Optional) The use-case name (abbreviations
preferred, e.g. ‘gs’ for green scheduler, etc.). To
be used if specific data isolation is needed for a
use-case.

Figure 9 : Proposed structure for Portforward scopes

3.5 Geohashing

Geohashes, created by Gustavo Niemeyer in 2008 and placed in the public domain, are an elegant

and succinct geographic encoding. Geohashes work by reducing a two-dimensional longitude,

latitude pair into a single alphanumeric string where each additional character adds precision to the

location.

The algorithm for creating a geohash works by consecutively splitting the world in four parts, once

longitudinal, once latitudinal. This way a long binary string (encoded in base 32) is created that

identifies a smaller and smaller space on the world map, the longer the string gets (as illustrated in

Figure 10).

Figure 10: Principle of Geohashing

As an example, the Eiffel Tower (Paris, France) is located at:

Geohash coordinates Lat/Long coordinates

u09tunqu1 48.8583 / 2.2945

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 22 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Interesting properties

There are some interesting properties associated with geohashes that can be exploited in favor of

scalability and performance:

1. URL friendly mechanism

 /locations/u09tunqu1/{typeId}/events vs
/locations/48.8583,2.2945,range=1km/{typeId}/events

2. Limit false queries

 Geohashes with wrong prefix, are outside the search area.

3. Zooming and neighbour search

 The more digits, the more precise: drop (least significant) digits and the area zooms out.

 Easy to discover neighbouring geohashes.

4. Cacheable

 Deterministic and absolute locations which is excellent for caching behaviour.

 By limiting the precision of the geohashes to 6-9 characters, there is a bigger chance of

overlapping request patterns / reuse.

5. Performance gains

 Searching geospatial results with a simple prefix text search.

LatLong vs geohash

The above reasons already go a long way towards advocating the use of geohashes. Although more

widely known than a geo-location mechanism, LatLng is not that handy to use.

1. You cannot just guess a LatLng, you have to look it up in a tool like Google Maps.

2. A LatLng exists of 2 doubles, which are more cumbersome in urls.

3. A LatLng only defines a point, you need a range for an area.

4. LatLng + radius is a circular area, which in a lot of cases is not ideal.

5. In those cases that a circular area makes sense, there isn't really a reason not to use a square

area. However, when really needed, libraries are available to return a set of geohashes that

cover a given circular area.

6. LatLng + radius is complex for monitoring something like a road for instance.

3.6 Temporal paging

In a classical paging system you can ask a page of X results and then request the next page.

Implementing something similar would hurt the caching ability (since query parameters are not

cached) and it would mean in order to correctly handle incoming requests that a lot more states had

to be kept. That is why this system tries to combine both concepts: scalability of not having complex

queries that take too long and return way too much results and the added benefit that everything stays

as cacheable as possible without introducing more state.

Temporal brackets

In the backend, the frequency/rate of the sensor data is analyzed. According to that a dynamic

temporal strategy can be chosen (daily, hourly, minutely). Brackets will be split according to this

strategy (e.g. in the case of hourly: [15h-16h[,[16h-17h[, etc.). Along with the responses a Link

header will be sent with links to the previous and next brackets. This is done according to RFC 5988.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 23 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Caution

All timestamps are UTC based. Locale conversions should be handled in the client if needed.

Example use cases

These use cases illustrate the 2 different ways one can come in contact with the temporal paging

mechanism. Both images show a completely expanded view of a series of requests.

Figure 11 : Temporal Paging - Last available data

In this case everything is triggered by a simple request GET /sources/{id}/events. What happens

next:

1. The back-end automatically determines that the best temporal strategy for this source is

hourly.

2. The back-end returns the bracket from the previous full hour until now

 This is a currently filling bracket, so it is marked as not cacheable in the header.

 There is a Link header part that contains information about how to fetch the next

bracket.

 There is a Link header part that contains information about how to fetch this exact

bracket again: self.

3. If the client wants to go back a bit more to have more data, it can follow the next link and do

a GET request on that URL.

4. This time the server responds with the full hour bracket and marks it as cacheable.

 Again there is a Link header that contains the self, next and this time also prev

links.

5. Once the client decides that it has enough data, it stops sending requests.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 24 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Figure 12 : Temporal paging - Historical data

In this case everything is triggered by a simple request GET

/sources/{id}/events?from=1485353100&to=1485366000. What happens next:

1. The back-end automatically determines that the best temporal strategy for this source is

hourly.

2. The back-end returns the bracket from the ‘from timestamp’ up until the next full hour.

 This is not a complete bracket, so it is marked as not cacheable in the header.

 There is a Link header part that contains information about how to fetch the next

bracket.

 There is a Link header part that contains information about how to fetch the prev

bracket.

 There is a Link header part that contains information about how to fetch this exact

bracket again: self.

 There is a Link header part last too, that references the URL of the last bracket.

3. To get the subsequent data of the from-to interval, the client must follow the next links.

 These brackets are all full and are marked as cacheable.

4. On each response, the client checks if the next link does not have the same path as the last

link from step 2.

5. Once the path of the next and the last link are equal, the client must append the querystring

to the last request.

6. The server will return the incomplete bracket for the last full hour up until the to timestamp.

 This will be marked uncacheable, since it is not a full bracket.

7. The client now has the complete requested interval and stops sending requests.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 25 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

3.7 The concepts in practice (Swagger UI)

This section aims at more in-depth looking at the usage of those concepts and how they have been

implemented within the IoT Stack APIs (see https://obelisk.ilabt.imec.be/swagger for the exhaustive

list of available APIs with their documentation). As a first example, this query:
/api/v1/scopes/portforward.demo1/things/SmallCrane1/metrics/Weight/events/201811

21/12 (see the exact query in the Figure 13 – note the bearer has been replaced by ‘xxx’).

Conceptually this means: “retrieve all raw events received on the 21st of November 2018 between

noon and 1 PM from the Thing (/device) SmallCrane1 about the Metric Weight”. As this thing also

systematically sends its position it is returned as well. A list of 2995 records is retrieved, of which

the 60 first are listed in Figure 13 as illustration (for the sake of readability the column RowID has

been added and the Unix Epoch Timestamp has been transformed into a human readable format.

Finally some redundant information like the scope have been removed).

Figure 13 : A thing based query

The crane moves unloaded before stopping and waiting for a new container that it then gets (+43000

in weight, row 37) and then starts moving again before unloading it (row 58) and leaving again (row

59).

Now as a second example, complementary to the first one, a location based query will be examined:
/api/v1/scopes/portforward.demo1/locations/u1551njt3x3d/Weight/events/20181121/1

2 (see the exact query in the Figure hereafter – note the bearer has, here again, been replaced by

‘xxx’). Conceptually this means: “retrieve all raw events received on the 21st of November 2018

between noon and 1 PM from Things that passed through this position and that report on/measure

RowID

Unix Epoch Timestamp as

Human readable format GeoHash Thing Weight RowID

Unix Epoch Timestamp as

Human readable format GeoHash Thing Weight

1 2018-11-21 12:00:00.657 u15h3qs2g9n2 SmallCrane1 2000 31 2018-11-21 12:00:33.515 u1551njt3x3d SmallCrane1 2000

2 2018-11-21 12:00:01.468 u15h3kh75eqr SmallCrane1 2000 32 2018-11-21 12:00:34.870 u1551njt3x3d SmallCrane1 2000

3 2018-11-21 12:00:02.842 u15h32k2g8y3 SmallCrane1 2000 33 2018-11-21 12:00:35.775 u1551njt3x3d SmallCrane1 2000

4 2018-11-21 12:00:03.345 u15h1qsk7en6 SmallCrane1 2000 34 2018-11-21 12:00:36.782 u1551njt3x3d SmallCrane1 2000

5 2018-11-21 12:00:04.756 u15h16kk7tqm SmallCrane1 2000 35 2018-11-21 12:00:37.587 u1551njt3x3d SmallCrane1 2000

6 2018-11-21 12:00:05.261 u15h12urg8q2 SmallCrane1 2000 36 2018-11-21 12:00:39.401 u1551njt3x3d SmallCrane1 2000

7 2018-11-21 12:00:06.349 u155cqb1bgk1 SmallCrane1 2000 37 2018-11-21 12:00:40.187 u1551njt3x3d SmallCrane1 45000

8 2018-11-21 12:00:08.063 u155c4j83w3t SmallCrane1 2000 38 2018-11-21 12:00:43.693 u1551pvece1w SmallCrane1 45000

9 2018-11-21 12:00:08.567 u155c0tec91x SmallCrane1 2000 39 2018-11-21 12:00:44.497 u15534m9989w SmallCrane1 45000

10 2018-11-21 12:00:09.474 u1559jv898c8 SmallCrane1 2000 40 2018-11-21 12:00:46.741 u15535vtcw3t SmallCrane1 45000

11 2018-11-21 12:00:10.481 u15594tx3tce SmallCrane1 2000 41 2018-11-21 12:00:48.457 u15590vx1ecs SmallCrane1 45000

12 2018-11-21 12:00:11.389 u15590jectcw SmallCrane1 2000 42 2018-11-21 12:00:50.043 u1559jts9s3x SmallCrane1 45000

13 2018-11-21 12:00:12.898 u15535mw3t3d SmallCrane1 2000 43 2018-11-21 12:00:51.048 u155c0tt9x3s SmallCrane1 45000

14 2018-11-21 12:00:14.613 u1551nmt1xcs SmallCrane1 2000 44 2018-11-21 12:00:52.153 u155c5vs9s9t SmallCrane1 45000

15 2018-11-21 12:00:16.122 u1551njt3x3d SmallCrane1 2000 45 2018-11-21 12:00:53.160 u155cnucver1 SmallCrane1 45000

16 2018-11-21 12:00:17.697 u1551njt3x3d SmallCrane1 2000 46 2018-11-21 12:00:54.366 u155bwf3fg31 SmallCrane1 45000

17 2018-11-21 12:00:19.061 u1551njt3x3d SmallCrane1 2000 47 2018-11-21 12:00:55.170 u155bnvcy5m1 SmallCrane1 45000

18 2018-11-21 12:00:20.392 u1551njt3x3d SmallCrane1 2000 48 2018-11-21 12:00:56.175 u14gzwy3y7k1 SmallCrane1 45000

19 2018-11-21 12:00:20.996 u1551njt3x3d SmallCrane1 2000 49 2018-11-21 12:00:56.995 u14gzqfcze21 SmallCrane1 45000

20 2018-11-21 12:00:22.608 u1551njt3x3d SmallCrane1 2000 50 2018-11-21 12:00:58.002 u14gyzj593cx SmallCrane1 45000

21 2018-11-21 12:00:23.290 u1551njt3x3d SmallCrane1 2000 51 2018-11-21 12:00:59.308 u14unfvjck9t SmallCrane1 45000

22 2018-11-21 12:00:24.699 u1551njt3x3d SmallCrane1 2000 52 2018-11-21 12:01:00.782 u14unzjjc63d SmallCrane1 45000

23 2018-11-21 12:00:25.203 u1551njt3x3d SmallCrane1 2000 53 2018-11-21 12:01:01.085 u14uqbjnc69t SmallCrane1 45000

24 2018-11-21 12:00:26.789 u1551njt3x3d SmallCrane1 2000 54 2018-11-21 12:01:01.991 u14uqfv4369e SmallCrane1 45000

25 2018-11-21 12:00:27.493 u1551njt3x3d SmallCrane1 2000 55 2018-11-21 12:01:04.214 u14uwbm116cx SmallCrane1 45000

26 2018-11-21 12:00:28.886 u1551njt3x3d SmallCrane1 2000 56 2018-11-21 12:01:04.818 u14uwfj5371s SmallCrane1 45000

27 2018-11-21 12:00:29.291 u1551njt3x3d SmallCrane1 2000 57 2018-11-21 12:01:05.724 u14uwfmncrcw SmallCrane1 45000

28 2018-11-21 12:00:30.498 u1551njt3x3d SmallCrane1 2000 58 2018-11-21 12:01:06.730 u14uwfmncrcw SmallCrane1 2000

29 2018-11-21 12:00:31.805 u1551njt3x3d SmallCrane1 2000 59 2018-11-21 12:01:08.370 u14uqztp97c8 SmallCrane1 2000

30 2018-11-21 12:00:32.509 u1551njt3x3d SmallCrane1 2000 60 2018-11-21 12:01:09.476 u14uqut09q3w SmallCrane1 2000

curl -i -X GET "https://idlab-iot.tengu.io/api/v1/scopes/portforward.demo1/things/SmallCrane1/metrics/Weight/events/20181121/12" -H "accept:

application/json" -H "authorization: Bearer xxx"

https://obelisk.ilabt.imec.be/swagger

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 26 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

their Weight”. A list of 1412 records is being retrieved, of which the 30 first are listed in Figure 14

as an illustration (for the sake of readability, here again, the column RowID has been added and the

Unix Epoch Timestamp has been transformed into a human readable format. Finally some redundant

information like the scope has been removed).

Figure 14 : A location based query

On its own this table already provides interesting information: the Thing ‘SmallCrane1’ remained at

this location during 24sec and 65 ms. It was unloaded and received its container from ‘Truck 860’ in

a little bit less than 1sec (fictive values from the demo) before immediately leaving the area. 31

seconds and 104ms after, ‘Smallcrane0’ arrived empty and waited at least for 3sec and 708ms.

Now combining the information contained in both queries, some first bricks for effective management

and scheduling of port operations appear: where SmallCrane1 came from and went to, at which

precise time it was loaded/unloaded and from/to which truck, etc.

It is now clear that this layer is no standard Middleware for multi-purpose integration (like ESBs,

MQ Systems, etc.) but rather a specialized integration layer for the IoT.

Row ID

Unix Epoch Timestamp as

Human readable format GeoHash Thing Weight

1 2018-11-21 12:00:16.122 u1551njt3x3d SmallCrane1 2000

2 2018-11-21 12:00:17.697 u1551njt3x3d SmallCrane1 2000

3 2018-11-21 12:00:19.061 u1551njt3x3d SmallCrane1 2000

4 2018-11-21 12:00:20.392 u1551njt3x3d SmallCrane1 2000

5 2018-11-21 12:00:20.996 u1551njt3x3d SmallCrane1 2000

6 2018-11-21 12:00:22.608 u1551njt3x3d SmallCrane1 2000

7 2018-11-21 12:00:23.290 u1551njt3x3d SmallCrane1 2000

8 2018-11-21 12:00:24.699 u1551njt3x3d SmallCrane1 2000

9 2018-11-21 12:00:25.203 u1551njt3x3d SmallCrane1 2000

10 2018-11-21 12:00:26.789 u1551njt3x3d SmallCrane1 2000

11 2018-11-21 12:00:27.493 u1551njt3x3d SmallCrane1 2000

12 2018-11-21 12:00:28.886 u1551njt3x3d SmallCrane1 2000

13 2018-11-21 12:00:29.291 u1551njt3x3d SmallCrane1 2000

14 2018-11-21 12:00:30.498 u1551njt3x3d SmallCrane1 2000

15 2018-11-21 12:00:31.805 u1551njt3x3d SmallCrane1 2000

16 2018-11-21 12:00:32.509 u1551njt3x3d SmallCrane1 2000

17 2018-11-21 12:00:33.515 u1551njt3x3d SmallCrane1 2000

18 2018-11-21 12:00:34.870 u1551njt3x3d SmallCrane1 2000

19 2018-11-21 12:00:35.775 u1551njt3x3d SmallCrane1 2000

20 2018-11-21 12:00:36.782 u1551njt3x3d SmallCrane1 2000

21 2018-11-21 12:00:37.587 u1551njt3x3d SmallCrane1 2000

22 2018-11-21 12:00:39.201 u1551njt3x3d Truck860 45000

23 2018-11-21 12:00:39.401 u1551njt3x3d SmallCrane1 2000

24 2018-11-21 12:00:40.187 u1551njt3x3d SmallCrane1 45000

25 2018-11-21 12:00:40.187 u1551njt3x3d Truck860 2000

26 2018-11-21 12:01:11.291 u1551njt3x3d SmallCrane0 2000

27 2018-11-21 12:01:12.197 u1551njt3x3d SmallCrane0 2000

28 2018-11-21 12:01:13.487 u1551njt3x3d SmallCrane0 2000

29 2018-11-21 12:01:14.091 u1551njt3x3d SmallCrane0 2000

30 2018-11-21 12:01:14.999 u1551njt3x3d SmallCrane0 2000

curl -X GET "https://idlab-

iot.tengu.io/api/v1/scopes/portforward.demo1/locations/u1551njt3

x3d/Weight/events/20181121/12" -H "accept: application/json" -H

"authorization: Bearer xxx"

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 27 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

3.8 Planned feature: video streaming

The IoT Stack can not only process simple sensor data, it can also handle larger audio/video streams.

Streams can be ingested in a similar fashion to sensor data and are automatically transcoded to the

desired qualities and stored on disk.

Once a stream is ingested it can be viewed as a live stream, using various qualities to produce an

adaptive bit rate (ABR) live feed using the DASH technology. It also supports video-on-demand

(VOD) by requesting a specific time range to only get that specific segment in a desired quality. This

makes it easy for post processors to retrieve the live data in chunks, extract information and then

continue with the next chunk.

To prevent having an infinitely growing storage problem, older VODs are gradually degraded, i.e.

the highest qualities get removed first. The VOD API has a few strategies for handling missing

quality: it can fall back to reduced quality, it can skip these chunks altogether or it can reject the

request.

The video API also allows to retrieve a specific snapshot at a given time. This can be useful to

combine with the post processor’s result.

Figure 15 : Video streaming with object detection

Figure 15 represents the overall mechanism of this feature. The video stream is being ingested through

the VideoIngest API that transcode it to the various qualities (240p, 480p…) that it needs to be

transcoded to. For instance, if a stream from a CCTV camera is ingested and the end user wants to

know if persons were detected between 02:00 and 04:00 in the morning then the following needs to

be set up:

1. A stream needs to be defined along with the various qualities (240p, 480p, …) that it needs to

be transcoded to.

2. The data of the newly created stream needs to be pushed to the video ingest API of the IoT

Stack.

3. A post processing unit does:

a. Infinitely retrieve the x last minutes of the stream from the VOD API.

b. Run the object detection module (e.g. YoloV3).

c. Push the detection result as “sensor” data to the non-video parts of the IoT Stack.

4. With the query API all ‘detection result’ metrics between 02:00 and 04:00 can be retrieved

and analyzed whether the ‘person’ object class is present.

5. If persons were detected, the snapshot endpoint can be used to retrieve an image from the

stored data at the given time of detection for visual confirmation.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 28 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

These video API extensions to the IoT Stack are currently implemented as a prototype and its

endpoints are subject to change.

3.9 Features provisioned outside of the IoT Stack

So far what the Middleware IoT Stack platform is or shall be has mostly been discussed but no time

has been spent to explain what it is not (and consequently does not and shall not offer), something

that will be further detailed in this section but can already be summarized as such: this Middleware

layer is not intended to host ‘business specific’ logic or data; it mainly is to remain a ‘universal’ cloud

connector for IoT devices to be easily integrated within classical applications.

For the sake of clarity, the importance of the hereafter listed topics for a successful end-to-end

implementation of this project objectives must not be underestimated, and for those different topics

IMEC would actively contribute to (if not keep the ownership of) their design and implementation as

part of this project deliverables.

3.9.1 Pre-processing

(Pre-)Processing can be described as the activities and tasks to perform cleaning, preparation,

transformation, wrangling, edition, linking, computation, reduction, sorting, ordering and storing on

an incoming stream of data to accommodate any needed business specific outflow.9

There is of course no debate on the need for data (pre-)processing as this feature brings great added

value when it comes to seamlessly render results of large computation to an end user as experienced

in the demo use-case with the heat map10 where no pre-processing capability has been put in place;

there are many such and even more complex components in the scope of this project that would

definitely need this capability (Decision Support System, Virtual Reality, Augmented Reality, etc.)

that this key dimension can’t just be ignored.

However, and as explained in previous sub-section, the IoT Stack, as IoT specialized Middleware

integration layer, is not the best place for this and therefore it should be recommended to implement

this in the upper architectural layers (ideally through reactive11 micro-services12 as well) like in the

applicative containers hosted in the Virtual Fort Knox environment. Figure 16 depicts such an

approach with (low-level) data services processing the incoming flow (or querying data) from the IoT

Stack and persisting the processed outcome as desired. Higher level applicative services (like the

Green Scheduler for instance) making use of those generic and reusable low-level data oriented

services.

9 This definition and the different interpretation that could be done of it should not be considered as binding but rather as

an illustration.

10 On a more technical perspective, besides the impact on the end-user, having no preprocessing in place would negatively

impact the overall performance of the IoT Stack and thus of all the applicative components, including the end-user facing

ones

11 Reactive programming particularly fits event based data streams (what IoT applications typically are)

12 A micro-services architecture, which besides its numerous advantages, fits cloud platform deployment (most especially

elasticity).

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 29 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Figure 16 : (Pre-)Processing of data in VFK

Now taking the video ingestion capability (see section 3.8) as an example, the Middleware IoT Stack

performs internally processing when transcoding or when performing object detection on the video

stream. As this happens the same way for any type of video stream and is not different for one use

case or another, it is deemed being functionally agnostic (i.e. having no purpose of accommodating

any business specific outflow) and consequently can be seen as some sort of black-box provided

feature. To avoid any potential misunderstanding, it won’t be further commented in the context of the

IoT Stack: (pre-)processing only occurs within the consuming upper layer(s) (like the containers

hosted within the VFK environment).

3.9.2 Meta-Data and other non-IoT data

As explained in the introduction of this section, the Middleware IoT Stack “mainly is to remain a

‘universal’ cloud connector for IoT devices to be easily integrated within classical applications”; it

should therefore not be compared with or understood as a classical multi-purpose middleware (like

an Enterprise Service Bus or a Message Queue Broker for instance); the very nature of its design

makes it efficient for IoT driven data stream ingestion, so typically for frequent, small sized events

messages representing the state of a sensor device. Accordingly, the data structure used within the

IoT Stack has been designed to store devices (‘things’) and their related metrics attributes (position,

weight, temperature, state, humidity, etc.); so it is not tailored to large unstructured data that can

typically be found within classical applicative databases. To integrate such content from ports’ legacy

systems within PortForward, an ad-hoc and direct integration should be preferred.

For instance: in the case of a container, a typical data stream that would be ingested by the IoT Stack

would be its current location, temperature, humidity level and state (open/closed) but it should not be

data from a legacy asset management system like owning company, description of the goods it

contains, clearance documents, last maintenance date and operator, etc.

In order to avoid doubt, IMEC will review, with each Use-Case owner, the type and relevance of its

requirements before validation (or adaptation).

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 30 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

4 Usage of the IoT Stack platform

4.1 Authentication and Authorization

The IoT Stack uses Keycloak (by RedHat) as an Identity Server. It implements the latest User-

Managed Access specification (UMA 2.0) which essentially is an extension of the OAuth 2.0

specification with a new grant type. It allows for complex sharing situations between different

resources owners and actors on behalf of owners.

Authentication must be seen as the act of logging in; nothing more than that, a guarantee that one is

who he/she claims to be. For authentication the IoT Stack relies on Keycloak as an OIDC Provider

broker. This means that the IoT Stack is not storing any passwords, just linking user accounts with

harmless identifiers received from existing and well-known authentication services13. When logging

in to the API, the user is able to select one of the supported identity providers to log in to, and

afterwards is redirected back to Keycloak (and eventually the application that initiated the flow)14.

Authorization is checking whether the authenticated person/application/device is allowed to view or

act on the resources requested. This is done on two levels. The first level will deny requests if one

tries to access an endpoint he/she doesn't have access to. The second level denies accessing

information one is not allowed to view (although he/she may technically access the endpoint).

Before any authorization (read: allowed use of the APIs) can happen, one must thus be first

authenticated (read: he/she is well who he/she claims to be). This results in an access token

representing the client, i.e. a device or an application (and possibly as well the user using the

application).

The client (device/application) will be registered as an application acting on its own (or on behalf of

users) and receives from the IoT Stack a client_id and a client_secret (only a client_id if application

acting on behalf of the user). These are called the client credentials and will be needed at some point

in the authentication process.

For authenticating either the client as itself (a device or an application), or the client on behalf of the

user, one of the two OIDC flows must be used. Depending on the flow, the authentication process

might go slightly different15.

The implicit flow16 lets a client application or device immediately receive an access token to access

the authorization APIs. It does so at the expense of sending the tokens in the redirect_uri. Because

these clients typically can't keep a secret from the user agent or other processes on the client host,

13 For the time being Google is the only supported OIDC provider. In the future more providers might be added, the focus

being at this time however to first get the most important features working.

14 Logging in at the identity provider's own website, guarantees that the IoT Stack is never able to read or get the user’s

password.

15 There are indeed two main flows of authentication: Implicit flow and Authorization code flow. While the former is the

simplest, the latter is the most secure. However in the case of browser applications Authorization code flows can't be

guaranteed to be secure, that's why the implicit flow exists.

16 There are not a lot of cases where implicit is a good fit. There is no refresh token, meaning that the complete auth

procedure must be executed again once the token expires. That is why this is typically suited for a one-off task.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 31 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

these client themselves are not authenticated (just identified by a client_id). This flow is typical for

browsers.

Authorization code flow17 makes a client application or device take an extra indirection step, making

sure the token can't be easily intercepted by different attacks. After initial authentication, the client

receives an access code (rather than an access token) that cannot immediately be used to access the

authorization APIs. This code must then be sent to the token endpoint

(https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-

connect/token) to receive the actual access_token. This must be done with an HTTP POST request,

not with a redirect. The response will contain an access_token and a refresh_token. The sections

hereafter further describe the steps required to complete the auth process and end up with an RPT

token that can be used to access the APIs.

4.1.1 Authentication to the identity server

There are two different ways to authenticate: either the client is logging in on behalf of the user, or

the client/service authenticates as itself.

4.1.1.1 On behalf of the user

The client wants to identify the user along with itself to the API. In this case the client is an application

that is meant to be used by users as a tool that inherits their rights (to which they agree) 18; to this end,

the two main steps to be implemented are described hereafter.

a) Redirect to user login: This can be done through a link to the following url:
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-

connect/auth?parameters.... The parameters are described in the table hereafter:

Parameter values description

client_id - This is the client_id from the client credentials received when

registering the client application.

redirect_uri - This is the uri where the browser will be redirected to, once the

login procedure is over.

State - Opaque value used to maintain state between the request and the

callback. Typically, Cross-Site Request Forgery (CSRF, XSRF)

mitigation is done by cryptographically binding the value of this

parameter with a browser cookie.

17 The client library uses this flow by default and calls it the 'standard' flow.

18 The client library can do most of the heavy lifting for authentication/authorization, in case of a client-side JS/TS

application (see: https://obelisk.ilabt.imec.be/api/v1/docs/api/client-lib/). If you need to do this manually, follow the

defined steps.

https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/token
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/token
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/auth?parameters
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/auth?parameters
https://obelisk.ilabt.imec.be/api/v1/docs/api/client-lib/

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 32 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Nonce - A cryptographic string, that will be represented to the client in

the requested token, to mitigate replay attacks19.

response_mode fragment

query

form_post

How the token will be returned to the redirect_uri (fragment is

highly recommended). In case of response_mode fragment the

redirect uri will contain a hash fragment that contains a token.

response_type (see table

hereafter)

Which OAuth 2.0 flow is being used. Public clients should use

implicit.

response_type OAuth flow Description

Code Authorization

code flow

Response will contain a code that should be exchanged for a

token at the token endpoint (client should be able to keep code

a secret from browser/other code, e.g. a server backend that can

do a back-channel request).

id_token Implicit flow Response will contain an id_token immediately (when clients

can't keep a code secret, this is the go to flow).

id_token token Implicit flow Response will contain an id_token and access_token

immediately (when clients can't keep a code secret, this is the

go to flow). Tip: start with id_token token as this is the simplest

authN flow.

b) Retrieve code/token from hash: In case of implicit flow, the access_token and possibly the

id_token are in the redirect_uri hash and there is no need for an extra POST request. The

id_token is for user customization in the client and of no importance for the IoT Stack

anymore. The format is JWT. The access_token will be used in section 4.1.2.

In case of Authorization code flow (recommended), at the redirect_uri location there should

be a script that is able to extract the code from the hash (in case of use of response_mode

fragment). After the login procedure is over, the redirect_uri will be called and in the hash

fragment there will be a parameter code. This value must be used to do a POST request to
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-

connect/token with the following headers:

Header key Header value

Content-Type application/x-www-form-urlencoded

19 More info available at: https://en.wikipedia.org/wiki/Cryptographic_nonce and https://auth0.com/docs/api-

auth/tutorials/nonce .

https://en.wikipedia.org/wiki/Cryptographic_nonce
https://auth0.com/docs/api-auth/tutorials/nonce
https://auth0.com/docs/api-auth/tutorials/nonce

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 33 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

… and body (concatenated as form data param=value¶m2=value2):

Form param key Form param value

grant_type authorization_code

code code_value

redirect_uri https://my-example.app.com

client_id client_id

The received JSON response contains access_token, id_token and refresh_token (for the

access_token).

4.1.1.2 The client as itself

To authenticate the client application or service, a valid client_id and client_secret pair are

necessary20. The client credentials are encoded in an authString

Base64Encode(client_id:client_secret). This authString is then used to do a POST request to
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-

connect/token with the following headers:

Header key Header value

Content-Type application/x-www-form-urlencoded

Authorization Basic authString

… and body (concatenated as form data param=value¶m2=value2):

Form param key Form param value

grant_type client_credentials

The received JSON response contains access_token and refresh_token (for the access_token).

4.1.2 Getting the RPT token

The final step is to get the RPT, which is the actual access token needed to talk to the IoT Stack APIs.

For this a HTTP POST request must be sent to this url:
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-

connect/token.

20 For first request, see : https://obelisk.ilabt.imec.be/api/v1/docs/getting-started/request-access/

https://my-example.app.com/
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/token
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/token
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/token
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/token
https://obelisk.ilabt.imec.be/api/v1/docs/getting-started/request-access/

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 34 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

The request will contains these headers:

Header key Header value Description

Authorization Bearer access_token The access token received in previous

step prefixed with Bearer.

Content-Type application/x-www-form-urlencoded Form format to send two important form

parameters in the body.

… and these required form parameters:

Form param key Form param value

grant_type urn:ietf:params:oauth:grant-type:uma-ticket

audience policy-enforcer

Scope (optional) offline_access21

The IoT Stack will return a message that looks like this:

{

 "upgraded": false,

 "access_token": "eyJhbGciOiJSUzI1NiIsInR5cCIgOiA...",

 "expires_in": 300,

 "refresh_expires_in": 1800,

 "refresh_token": "eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSl...",

 "token_type": "Bearer",

 "not-before-policy": 0

}

The access_token field is the RPT token. This is what must be used for every request to the API. The

refresh_token can be used to quickly refresh an expired access_token. The details are explained in

section 4.1.4.

4.1.3 Call a resource

Now a resource on the API can be called by including this header: Authorization: Bearer RPT.

21 For more info on offline_access, see : https://obelisk.ilabt.imec.be/api/v1/docs/security/offline_access/

https://obelisk.ilabt.imec.be/api/v1/docs/security/offline_access/

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 35 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

4.1.4 Refreshing the RPT

When getting an ERROR 401 response on a correct API resource call (as defined in section 4.1.3), it

probably means that the RPT token expired. In section 4.1.2 there was an expires_in field, which can

be used to timely refresh the token. Refreshing the token is done by sending a HTTP POST request

to this url: https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-

connect/token.

It should have the following header: Content-Type: application/x-www-form-urlencoded and

contain the following form parameters:

Form param key Form param value

grant_type refresh_token

refresh_token refresh_token (received in 4.1.2)

client_id cliend_id

The IoT Stack will return a message that looks like this

{

 "upgraded": false,

 "access_token": "eyJhbGciOiJSUzI1NiIsInR5cCIgOiA...",

 "expires_in": 300,

 "refresh_expires_in": 1800,

 "refresh_token": "eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSl...",

 "token_type": "Bearer",

 "not-before-policy": 0

}

The access_token field is the new RPT token. This is what will be used for every new request to the

API. The refresh_token is also important, it has a new expiry date and should replace the previous

refresh_token to be able to refresh continuously.

4.2 How to push data through the REST API?

A generic ingest API is provided for devices and applications that need to push data to the IoT Stack.

It is used by devices that need to push new data to the IoT Stack by providing the scope to which they

‘belong’, their position as well as the metrics (associated to things) and their respective values. This

API is defined within the Swagger UI and illustrated in Figure 17 hereafter.

https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/token
https://obelisk.ilabt.imec.be/auth/realms/idlab-iot/protocol/openid-connect/token

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 36 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

Figure 17 : Screenshot from ingest API as defined in the Swagger UI

When needed, a specific API for video ingestion can also be provided: however it is not yet

documented within Swagger UI as it still is being prototyped at the time of editing this document.

4.3 How to retrieve data?

There are mainly two different ways for a client application to retrieve data from the IoT Stack:

a) By the use of queries: this mode should be preferred for applications needing to query

(historical) data when required (e.g. at end-user click) or for batch oriented applications. It is

mainly composed of three categories:

1. Scope Metadata Operations: Operations for accessing Scope metadata (e.g.: What is

measured? Who has access?)

2. Scope Thing Query Operations: Operations for querying raw or derived metric data

for a single Thing.

3. Scope Location Query Operations: Operations for querying raw or derived metric data

for a Location.

b) By using Server-Sent-Events (SSE): this mode should be preferred for applications needing

‘near real-time’ notifications from the IoT Stack each time a new event is triggered. It opens

a Server-Sent-Events stream to receive push events for the scope. This mode may be

configured as to keep or not keep a local copy (in the IoT Stack) of historical data; in both

cases however data is buffered to allow replay in case of client temporary disconnection. It

has been designed for data stream oriented use-cases.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 37 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

5 Integration of IoT Stack through Virtual Fort Knox

Introduction and Integration of cyber-physical systems or Internet of Things (IoT) in common lead

to disruptive changes and increasing complexity for IT solutions in the field of production and

logistics. The use of service oriented architectures can be one possible solution to increase stability,

security, reliability, traceability and flexibility. However, due to the lack of security requirements,

they are not applied.

The Virtual Fort Knox platform (‘VFK’ hereafter) offers manufacturing and logistics companies a

Private Cloud solution within a secure and scalable cloud environment. It allows the integration and

connection between different systems like IT infrastructures, Cloud Platforms, cyber-physical

systems and digital services by providing a homogenous, service based integration layer called

“Manufacturing Service Bus” (‘MSB’ hereafter). The VFK platform together with the MSB can

operate as a central interface for the connection and integration of different cyber-physical systems

and services which is shown on Figure 18.

The following description shows how it is possible to use the VFK platform within the PortForward

project to operate services and integrate different systems (sensors, actors, cyber-physical systems,

3rd party port management systems etc.). It gives a high level overview how to deploy and operate

services which can be connected to the IoT Stack of IMEC described earlier in this document, too. A

detailed description how to implement a service running on VFK platform will be given in

Deliverable D3.3.

Figure 18: Virtual Fort Knox Components and Roles (Source: Virtual Fort Knox Research)

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 38 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

5.1 Service Deployment

VFK offers different ways to develop, aggregate and deploy an own service. The first option is the

use of Cloud Service Automation together with Operations Orchestration using OO Flows22 & 23 what

could lead to slightly higher expenses in porting or migrating existing services and currently limits

the usable technologies for implementation to Java or .NET.

The second option is the use of Docker by containerizing existing or new services or applications and

deploy them to the VFK platform. The only restrictions on technology level are based on restrictions

of Docker itself as well as some current restrictions by using Docker on VFK:

 Services may include a configuration directory to store persistent data like databases and

configuration files.

 Services currently may only contain one Docker Container. Docker-Compose is not supported

yet.

 Services are restricted to one IP Network Port (customizable) – this limitation will be changed

in further releases

It is possible to use (nearly) any Application Environment and runtime which only has the restriction

that it should be containerized into a Docker container.

Deploying services based on Docker Images allows the reuse of existing services or applications

already deployed based on Docker or the easy „containerization“ of existing applications and

services. The VFK platform offers all necessary basic components like the management and runtime

environment as well as a Docker Host where the Docker containers are instantiated (see Figure 19).

Figure 19: Service deployment on Virtual Fort Knox by using Docker

To deploy a service as a Docker container it is necessary to provide a Docker container configuration

and create a service offering in VFK (a service offering is like a template for an application). This

service offering can be used to create an instance of the service which can be accessed via the

provided IP Address and Port (request and response pattern) or through connecting the service to the

MSB (publish-subscribe pattern by collecting and redistributing data via a message broker).

22 https://www.microfocus.com/en-us/products/operations-orchestration-it-process-automation/overview

23 http://www.hp.com/hpinfo/newsroom/press_kits/2009/HPSoftwareUniverseHamburg09/HPOODataSheet.pdf

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 39 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

5.2 Services types

According to Figure 18, Services running on the VFK platform can be separated into three different

types:

 Integration Services

 Services

 Aggregated Services

All three types of services can be deployed based on OO Flows or by the use of Docker images. These

three types of service differ in what functionality they implement and how they receive, process, and

deliver data.

Integration Services

Integration Services can be used to connect third party systems like sensors, actors, cyber-physical

systems in general or the IoT Stack provided by IMEC to exchange data between services and third

party systems by using the MSB. The advantage here is obvious: for connecting third-party systems,

only one integration service has to be developed, and all other services can access this data via the

MSB or make data available.

Basic Services

Basic Services can be used to implement specific applications or functions for transforming,

calculating or storing any data. However, the granularity of services should be limited to specific

functions or tasks and not represent complex applications. Additionally integrating third party

systems is not only limited to Integration Services. It is possible to integrate third party systems by

the use of Services without using the MSB.

Aggregated Services

Aggregated Services are used for the implementation of complex functionality or applications like

representations of Digital/Virtual Twins, Port Management Applications or Dashboards by

integrating or combining different services. These services are mainly published to end users in line

with their respective business processes.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 40 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

5.3 Data Flow

Exchanging data between services at the VFK platform and third party systems like the IoT Stack of

IMEC can be realized via two options which is shown in Figure 20:

1. Pull Request and Response

2. Push

Figure 20: Data Flow via Pull/Response (1) or Push of Data (2)

Pull Request and Response

An integration service can be used to connect to the IoT Stack and directly request data from a given

endpoint. This option allows to request specific or filtered data and is mainly used to access additional

or raw data for further analysis. The pull request can be used to send data to the IoT Stack like

configuration parameters, too.

Pushing Data

As the IoT Stack integrates a lot of sensors or any third party systems which mainly create data based

on events it generates a flow of data. To receive all generated data by using the pull request it is

necessary to implement a polling mechanism requesting an API endpoint in a certain interval which

may lead to unnecessary requests if no new data has been generated or to high loads if the interval is

defined too big or too much data is being generated. A much more efficient option is to use a push

mechanism where the generated data of an event is being transferred as soon as the data has been

created. The IoT Stack can directly send (or push) data to the MSB where all connected services will

receive the data immediately.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 41 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

5.4 Use Case example

Initial situation

Containers shall be tracked and identified by the use of modern tracking (GPS and mobile network

based) and identification (e.g. RFID) technologies. As there exist a lot of different systems providing

tracking and identification functionalities but offering different types of APIs and data formats it is

very difficult to integrate tracking and identification solutions into own service.

Solution

Figure 21 shows an example how to implement Services on the VFK platform combined with the IoT

Stack followed by a short description of the different types of services used to realize this use case

example.

Figure 21: Possible Solution for integrating Tracking and Identification Technologies together with the IoT

Stack with services on VFK

The connection between services and solutions providing position and identification information can

be realized by the use of systems like the IoT Stack provided by IMEC or any other provider specific

middleware communicating with sensors or tracking devices. These components provide a

technology and system independent integration into own systems with less effort than implementing

each protocol for each tracking or identification solution (Integration Services).

Basic Services can be used for pre-processing, evaluation and analysis of data. These small services

can implement functions like storing positions, events (moving, reading of a RFID tag), analyzing

position data (e.g. Geofencing).

Based on these Basic Services aggregated services like Storage Management can be implemented

offering much more complex functionalities supporting the business processes inside a port.

D3.1 – Cloud Platform Integration concept and

guidelines

PortForward Version 1.0 Page 42 of 42

This project has received funding from the

European Union’s Horizon 2020 research and innovation program under grant agreement No 769267.

6 Conclusion

This document aimed at providing introductive guidelines on the cloud based IoT integration layer

(the so called IoT Stack, provided by IMEC) to technical partners of the PortForward project’s

consortium. It contextualized the rationale of the project’s layered architecture where the IoT Stack

plays a central role, before providing technical insights on the main features offered by the platform,

illustrated when possible by a demo use-case.

Located in the middle of the data stream flowing from the IoT devices to the software applications

and services that will be developed for PortForward, a specific focus has been put on the data

ingestion and retrieval features together with their associated security mechanism. For the same

reason, the VFK platform (provided by IFF) that will host the PortForward use-cases applications

and services has been briefly introduced, again mainly in an end-to-end data flow perspective.

As a matter of fact the platform will continue to evolve all along the project lifetime, therefore the

commitment taken by IMEC to accompany the partners in the realization of the PortForward use-

cases with on-time announcement, updated documentation and the support they may require.

